播客
实现零净目标的区域方法
蓝色氢项目可以通过解决原料和发电的上游排放问题,获得数百万美元的额外税收抵免
尼沙蒂·戴维斯,体育博士
迈向零净值的努力
It has been just over a year since the Inflation Reduction Act (IRA) was signed into law, containing the largest investment for climate action in history. The IRA allocates over $370 billion dollars for clean energy advancement through loans, 奖助金, and 税收抵免s to further the United States’ energy transition and energy security goals. One area of interest to further these goals is 氢.
氢 plays a pivotal role in energy transition for several reasons. 它是一种多功能的清洁能源载体,可以利用风能等可再生能源生产, 水和太阳能, as well as conventional energy sources 比如天然气. 另外, 氢作为一种能量储存形式,可以通过在剩余时间储存多余的能量,并在可再生能源短缺时释放这些能量,帮助解决可再生能源的间歇性问题, 从而提高电网的稳定性. 最后, 氢, 在群众的基础上, is an energy dense fuel that does not produce any carbon dioxide when combusted. 这对重工业是有益的, 在直接电气化面临挑战的情况下,氢可以取代或与传统燃料混合在一起吗.
Because of the important role that 氢 plays in energy transition, 为了确保生产和消费都得到大力激励,政府投入了大量资金. 美国能源部(DOE)计划提供高达80亿美元的拨款,用于在美国各地开发几个氢中心. 另外, 爱尔兰共和军推出了一项新的10年清洁氢生产税收抵免激励措施:45V条款.
IRA 45V概述
虽然爱尔兰共和军已经实施一年了, full guidance from the Treasury Department for 45V has not yet been released. 在高水平上, 然而,我们知道生产税收抵免将根据生产氢气的碳强度(CI)来支付。, 如果开发者达到了普遍的工资和学徒要求,就会获得5倍的生产信用奖励. Taking this bonus into account, the maximum credit amounts break down as shown in the table below.
While the carbon intensity brackets have been defined in the initial IRA legislation, 财政部还没有发布关于计算生命周期温室气体(GHG)排放量的额外指导或规定,这些温室气体排放量将用于计算氢的碳强度.
表1:氢生产税收抵免等级
碳强度(公斤有限公司2e / Kg H) | 最高信用额度(美元/公斤H2) |
0-0.45 | $3.00 |
0.46 – 1.5 | $1.00 |
1.6-2.5 | $0.75 |
2.6-4 | $0.60 |
生命周期排放和碳强度
取决于生命周期的排放边界, a life cycle assessment (LCA) can be described as “gate-to-gate,“从摇篮到大门”或“从摇篮到坟墓”的排放, 后一项包括在产品的整个生命周期中排放的温室气体总量, 过程或系统. It considers all stages that a product progresses through, 从原料提取, processing and transportation to end use and end-of-life disposal or recycling. 45V的预期系统边界是“从摇篮到栅极”.” This boundary is similar to the “cradle-to-grave” boundary, but it does not consider the emissions impact a product has once it leaves the manufacturer’s facility, 从制造商的生产设施到最终目的地的运输过程中产生的排放, 以及与产品使用有关的排放, 不被考虑.
Carbon intensity normalizes emissions produced, typically measured in carbon dioxide equivalent (CO2E),以特定活动、投入或产出为单位. In the case of 45V, the carbon intensity is measured in kilograms of CO2每千克氢(公斤有限公司2H e /公斤2).
产氢途径
有几种不同的途径, 具有不同的碳强度, to produce 氢 and each production pathway has been anointed with a color classification. 绿色氢利用可再生能源发电,然后通过电解将水分解成氢原子和氧原子. 电解是在两个多世纪前被发现的,但它并不是一种经济的制氢途径,因为它是一个非常耗能的过程. With falling renewable electricity prices and the drive towards a net zero energy economy however, 随着企业开始扩大绿色氢生产规模,以利用政府的税收优惠政策,这一领域的研究已经太多了.
从化石燃料来源制氢, 比如天然气, has been around for many decades and is the most economical 氢 production pathway to date. 目前, the majority of commercial 氢 is produced from methane that is typically sourced from natural gas. While economical, this process emits a significant amount of carbon dioxide (CO2),被称为灰氢. 然而,捕获CO是可能的2 in the production phase before it is emitted into the atmosphere. When this is done, the 氢 is known as blue 氢.
蓝色氢温室气体排放
Blue 氢 is primarily produced by steam methane reforming (SMR), or auto thermal reforming (ATR) with a carbon capture unit downstream of the 氢 production process.
图1:蓝色制氢过程
In both steam methane reforming and autothermal reforming, the associated chemical reactions produce about the same levels of GHG emissions. 这些过程排放占通过化石燃料生产氢的温室气体排放总量的很大一部分. 利用最新的碳捕获技术,CO2 捕获率可达95%及以上. 这减少了温室气体的排放, 因此整体CI, 蓝氢生产过程所固有的. However, to meet the top tiers of 45V credits, other well-to-gate reductions must be accomplished.
The diagram below shows well-to-gate emissions associated with grey 氢 production. 有三个主要的排放源对总体CI有贡献:天然气开采和运输排放, 设施制氢排放, 以及与发电有关的排放. 国际能源署(IEA)估计,未经稀释的天然气产生的灰氢的碳强度在10-14千克二氧化碳的范围内2H e /公斤21 which does not qualify its usage for any government tax incentives.
图2:从油井到闸门的灰氢排放
蒸汽甲烷重整制氢过程中直接排放的二氧化碳约为9千克2H e /公斤21 and can be minimized with carbon capture as shown in 图3 below.
图3:从油井到闸门的蓝色氢排放
国际能源署估计93%的二氧化碳2 从小型反应堆设施内的直接排放源捕获可以将生产设施内的碳强度降低到0.7 KgCO2/公斤H2, bringing the total CI of the blue 氢 to a range of 1.5-6.2公斤二氧化碳2e / KgH2. To achieve the lower end of this range, upstream emissions must be minimized accordingly.
蓝色脱碳机会
下表总结了计算蓝氢碳强度时必须考虑的排放源
表2:蓝色氢碳强度情景
蓝色氢参考案例 | 上游排放CI (公斤有限公司2H e /公斤2) | 工厂运行(95%捕获率)CI (公斤有限公司2H e /公斤2) | 电力需求CI (公斤有限公司2H e /公斤2) | 总计 (公斤有限公司2H e /公斤2) |
场景一 平均上游排放量 中位数电CI | 2.25 | 0.45 | .7 | 3.4 |
情形B 低上游排放; 中位数电CI | 0.8 | 0.45 | .7 | 1.95 |
情形C 低上游排放; 低电量CI | 0.8 | 0.45 | 0.025 | 1.28 |
Using this table, we can calculate the 税收抵免s that can be earned. 天然气和电力生产占整体蓝氢碳强度的很大一部分. 美国天然气的平均CI为2.49公斤二氧化碳2H e /公斤22. 这可以简化为2.25公斤一氧化碳2H e /公斤2 当去除与配电网相关的排放时,氢电厂通常不会利用. The median carbon intensity for electricity in the US is .7公斤二氧化碳2H e /公斤23 并且被用来代替平均值.
场景一:
Using the average CI for US natural gas and the median CI for electricity in the US, 总碳强度计算为3.4公斤二氧化碳2H e /公斤2 which correlates to the lowest 税收抵免 bracket of $0.每公斤60 H2.
场景2:
下一个, let us consider a scenario that sources differentiated natural gas with a methane leak rate of 0.16%2 和CI (0.8公斤二氧化碳2H e /公斤2.In this scenario the CI of the blue 氢 is reduced to 1.95公斤二氧化碳2H e /公斤2 谁有资格得到0美元.75 /公斤H2 税收抵免.
场景C:
最后, let us reduce the carbon intensity of our electricity by switching to renewable power. 在最后的场景中,我们的CI变为1.28公斤二氧化碳2H e /公斤2 并且有资格获得1美元.00 H /公斤2 生产税抵免.
下表总结了上述情景对生产1000 MTPD H的蓝色氢气工厂的货币影响2 效率为85%.
表3:1000MTPD的税收抵免影响2 生产设备
上游排放 (公斤有限公司2/公斤H2) | 工厂操作 (公斤有限公司2/公斤H2) | 电力消耗 (公斤有限公司2/公斤H2) | 总H2 CI (公斤有限公司2/公斤H2) | 氢税等级 (美元/公斤H2) | 年度抵税额 (百万美元/年) |
2.25 | 0.45 | .7 | 3.4 | $0.60 | $175.20 |
0.8 | 0.45 | .7 | 1.95 | $0.75 | $219.00 |
0.8 | 0.45 | 0.025 | 1.28 | $1.00 | $292.00 |
The table above demonstrates that a blue 氢 facility producing 1000 MTPD H2 能产生292美元吗,000,000 per year in 税收抵免s if electricity and natural gas are strategically sourced. This is an increase of over $116,000,000 per year compared to the base credit rate. 相反, 不评估其与天然气和电力有关的排放的设施,如果其电力和原料是从高排放源采购的,则可能超出基本信用额.
必须进行排放评估,以确定与任何特定生产设施相关的实际CI. 新项目应该从概念阶段开始进行这些评估,以便在早期设计阶段做出决策,以最经济的方式减少碳足迹. 随着项目的不断发展, 排放评估应以新的和具体的信息进行更新,以确保项目按计划实现碳强度目标.
结论
尽管大多数人对完整45V指南的预期都集中在绿色制氢排放核算上, 重要的是要认识到,有关上游排放核算的规定也将对蓝氢产生重大影响. 如本文所示, 蓝色氢原料和电力使用的减排可以带来数亿美元的税收抵免. 另外, 以这种方式激励减排,有助于美国实现到2050年减少上游和中游资产甲烷排放、实现净零排放的目标.